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Frequency-Dependent Characteristics of Current
Distributions on Microstrip Lines

MASANORI KOBAYASHI, MEMBER, 1EEE, AND TAKAHIKO IIJIMA

Abstract —The spectral-domain analysis using Chebyshev’s polynomials
as basis functions is used to obtain the frequency-dependent characteristics
of current distributions and the effective relative permittivities of an open
microstrip line. The results obtained are compared with other available
results. To accurately obtain the current distributions requires a larger
number of basis functions. Both longitudinal and transverse current distri-
butions on the strip are shown for wide ranges of frequency (0 <k /Ay < 1).

I. INTRODUCTION

The dispersion characteristics of microstrip lines have been
investigated by a number of researchers using a variety of meth-
ods (see [1]-[10] and references therein). These methods are
intrinsically rigorous. However, the numerical results shown in
many papers were calculated by expressing the current distribu-
{ions with a small number of basis functions to save CPU time.
The current distributions are fundamental quantities as sources
for electromagnetic fields of microstrip lines. However, the litera-
ture on the determination of these distributions is sparse [11]-[14].

Recently, Shih er al. [13] proposed a full-wave analysis based
on conformal mapping and variational reaction theory. For a
number of cases, the results of effective relative permittivities [13]
were in good agreement with those tabulated in [8]. Furthermore,
Shih e al. [13] revealed the frequency dependence of the current
distributions. This was the first time that those characteristics
were reasonably obtained for wide ranges of frequency. At lower
frequency, the results agreed well with those shown in [11].
Subsequently, Faché and De Zutter [14] showed the frequency-
dependent characteristics of the current distributions. However,
in both these papers these characteristics were not shown in
frequency ranges higher than 4 /A, =0.2.

The present article shows the frequency-dependent characteris-
tics of current distributions and the effective relative permittivi-
ties up to /A, =1 for several cases. These results are obtained
by the spectral-domain approach [4] using the Chebyshev polyno-
mials adopted by Kitazawa and Hayashi [6] as basis functions.
The results obtained are compared with other available results.

II. Basis FUNCTIONS

The open microstrip line under consideration is shown in Fig,
1. It is assumed to be uniform and infinite in both the x and the
z direction. The infinitesimally thin strip and the ground plane
are taken as perfect conductors, The structure is divided into two
regions, corresponding to the air and the dielectric structure. It is
also assumed that the substrate material is lossless and that its
relative permittivity and permeability are € and p (=1), respec-
tively.

The propagation constant 8 can be obtained by the spectral-
domain approach [4] following the corrections mentioned in [8].
Then the choice of the basis functions is important for numerical
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Fig. 1. Microstrip configuration.

TABLE 1
COMPARISON OF EFFECTIVE RELATIVE PERMITTIVITIES (¢ = 8, w/h =1)

h/x,

METHOD
[5] 5.468 |6.124

0.005% 0.05 0.1 0.2 0.3 0.4 0.7 10

o

LTh2 7.361 7.620 7.747 7.898 | 7 945

M(N)
1| 5.4662]6.1218 | 6.7462 [ 7.3693 1 7.6302| 7.7561 | 7.8993[ 7.9458
KT 2|5 4678 | 6.,1272| 6.7576 | 7.3996 | 7.6591 | 7.7826 | 7.9.64] 7 9562
3| 5.4678 | 6 1272 6.7576| 7.3996 | 7.6591 | 7.7826 | 7.9164 | 7.9562
4[5.4678 16.1272 ] 6.7576| 7.39961 7.6591 ] 7.7826 [ 7.9268[ 7.9562
(133 5 471 6 130 6.753 7.393 7 654 7.778 7.9.4 7 948

KI: Present method; h /Ay = h(mm)f(GHz)/299.7925.

efficiency. Kitazawa and Hayashi [6] adopted T,(2x/w)/

yi-(2x /w)? and U,(2x/w) as basis functions and analyzed
various types of striplines by the network analytical method of
electromagnetic fields; T,(x) and U,(x) are Chebyshev polyno-
mials of the first and second kinds, respectively. Kitazawa and
Hayashi claimed that fast convergence to the exact values for
€. (f) was obtained, even for the cases of M=N=2,up to a
normalized frequency of A /A, =0.16 [6]. They showed the re-
sults of e (f) but not for the current distributions.

For the dominant mode, it is easily seen that I (x) is even-
symmetric with respect to the y—z plane while I, (x) is odd-sym-
metric [4]. T,(x)(U,(x)) is the even (odd) function when n is an
even number and the odd (even) function when n is an odd
number. Therefore, the present article takes the following basis
functions for I,,(x) and I,,(X):

L, (x) =0, (2x/w) (1a)

1) =T ) 1-Ga/w)? ()

on the strip (|xj<w/2) and zero for |x|>w/2. These basis
functions are Fourier transformed as follows:

P (@)= i(—1ynvRtT [l
L@ = 50 (B

o ne aw jalw
Ly(a) = (-1)f 1)/271,1-1(‘2—)

where J,(x) is the nth-order Bessel function.

(2a)
(2b)

III. NUMERICAL RESULTS

Table I shows a comparison of effective relative permittivities
€ (f) (e=8, w/h=1) for Kobayashi et al. [8], the present
method, and Shih et al. [13]. The influence of the number of basis
functions M (= N) on the current components is also included
in Table I. M and N denote the numbers of basis functions for
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TABLE 1I

COMPARISON OF EFFECTIVE RELATIVE PERMITTIVITIES (€ = 8, w/h = 0.1)

h,)\o
0 0 005 10 05 0.1 0.2 o3 0 4 07 1.0

METHOD
(2] |u4.02578% | 4.937 |5 270 | 5 765 [ 6.799 | 7.367 | 7 633 ] 7 876 | 7.939
r1 4 92573% | 4.937 |5 270 [ 5.765 | 6.799 |7 376 |7 6337 876 7.939
[13) | 5.02111 [ 5.033 (5 384 5.863|6.791 |7 365|7.617)7.872]7.938

KI: Present method; *- [15]
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Fig. 2 Normalized current distributions versus normalized distance with the
numbers of basis fuentions as parameters (e =8, w/h =1, h /Ay =0.2)

the transverse and longitudinal current components, respectively.
Table I shows that fast convergence to the exact values of € (f)
is obtained even for the cases of M = N = 2. The results obtained
with the present method show that the results in [8] and in [13]
are accurate to better than 0.5 and 0.1 percent, respectively. The
results in [13] were in good agreement with those in [8] for many
cases. However, there were discrepancies up to about 2 percent at
lower frequencies for the narrower case of e =8 and w/h =0.1.
This discrepancy of 2 percent was seen even at s /A, =0. This
comparison is reproduced here in Table II. The results with the
present method are obtained for M = N = 2. The result €., (0) =
4.92578 marked by an asterisk in Table II was calculated by the
Green’s function technique with an extremely high degree of
accuracy [15]. The results with the present method are in very
good agreement with those in [8]. These facts show that the
calculation using the method given by Shih er /. [13] must be
carried out carefully for the cases involving narrower strips, for
example, w/h =0.1.

Fig. 2 shows the normalized longitudinal and transverse cur-
rent distributions for several values of the number of basis
functions (M = N =1,2,3) at the normalized frequency % /A, =
0.2 for the case of ¢=8 and w/h=1. A good convergence of
current distributions requires M = N =3 for a normalized trans-
verse current distribution I (x)/I (x,) and M=N=2 for a
normalized longitudinal current distribution I.(x)/L(0). I.(x,,)
denotes the extremum value of I (x), and I(0) the value of
I,(x) at x = 0. It is confirmed, although not shown here, that the
above requirements with respect to the numbers M and N are
also valid for the cases where A /X, is less than 0.2. However,
larger values of M and N are required for the convergence of a
current distribution for cases where / /A, is higher than 0.2.

To illustrate this, the normalized transverse current distribu-
tions at /A, =1 for the case of ¢=8 and w/h =1 are shown
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Fig. 3. Normalized transverse current distributions versus normalized dis-
tance with the numbers of basis functions as parameters (e =8, w/h=1,
h/Ag=1).
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Fig 4 Frequency-dependent characteristics of normalized transverse current
distributions (¢ =8, w/h =1)

for M= N=1,3,7 m Fig. 3. It is seen in this figure that M =N
=3 is insufficient for the case where 4 /Ay =1. The curve for
M = N =5 is in agreement with that for M = N = 7 although it is
not shown in Fig. 3. The present article takes M =N=3 for
h/Ag<02, M=N=4for02<h/A;<04,and M=N=5to
7 for h /Ay > 0.4 to accurately obtain the current distributions.

Fig. 4 shows the frequency-dependent characteristics of the
normalized transverse current distributions for the case where
€=8 and w/h=1. The curve for h/A,=0 obtained in [11]
cannot be distinguished from that for & /A, = 0.001. It is seen in
Fig. 4 that the point x,, giving the extremum of the transverse
current distribution shifts toward the strip edge.

Fig. 5 shows the frequency-dependent characteristics of the
normalized longitudinal current distributions for the case where
€=8 and w/h=1. The curve for h /A, =0 obtained in [11] is
given by the dashed lines in Fig. 5 and is the upper bound for the
curves of nonzero frequencies. The distribution curve for i /A,
higher than about 0.2 begins to have the part below the horizon-
tal line of 7,(x)/L(0)=1.
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Fig. 5. Frequency-dependent characteristics of normalized longitudinal cur-
rent distributions (¢ =8, w/h=1). ——~ Green’s function technique [11};
— present method.

The shifts of the current distributions with respect to frequen-
cies for /Ay < 0.2 shown in Figs. 4 and 5 are similar to those
revealed by Shih ez al. [13], although for cases where € and w/h
have values different from those of the present article.

IV. CoNCLUSION

The spectral-domain approach has been used to obtain the
frequency-dependent characteristics of current distributions and
the effective permittivities of open microstrip lines. The func-

tions U,,(2x/w) and sz_l)(2x/w)/\/1_—(2x/w)2 have been
adopted as basis functions; 7,(x) and U,(x) are Chebyshev
polynomials of the first and second kinds, respectively. Numeri-
cal results reported in this article have been compared with other
available data.
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Shift of the Complex Resonance Frequency of a
Dielectric-Loaded Cavity Produced
by Small Sample Insertion Holes

SYLVAIN GAUTHIER, LOUIS MARCHILDON
AND CEVDET AKYEL

Abstract — The presence of small sample insertion holes in a cylindrical
cavity produces a shift in the complex resonance frequency of the cavity. A
mathematical mode! is proposed to compute the shift when the cavity
oscillates in an axially symmetric TM,,,,,, mode. The treatment applies to
samples with arbitrary complex permittivity. The model is compared with
other treatments and checked against measured results.

I. INTRODUCTION

Insertion holes in resonant cavities produce changes in both
the real and imaginary parts of the complex resonance frequency,
which may amount to a few percent and are significant in
high-precision measurements. Several attempts have been made
to quantify hole effects. Estin and Bussey [1] and Meyer (2] have
estimated the change in the real part of the resonance frequency
for some simple TM,,,, modes. Their main assumptions were
that the field is not perturbed in the main body of the cavity and
that in the tubes it is well represented by the first evanescent TM
mode. More recently, Li and Bosisio [3] have significantly im-
proved the treatment by allowing for a large number of modes in
the tubes. They have obtained correction terms due to insertion
holes for both the real part of the resonance frequency and the
quality factor of the cavity.

The present paper is an attempt to compute the shift of the
complex resonance frequency of a cavity produced by small
sample insertion holes. It was largely inspired by the work of Li
and Bosisio, which it tries to improve in two different ways. First,
we take fully into account the fact that, for lossy samples, the
phasors and the wavenumbers in the tubes are genuinely com-
plex. Second, we carry a larger fraction of the calculations
analytically. The resulting formulas are less susceptible to numer-
ical errors.
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