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Frequency-Dependent Characteristics of Current

Distributions on Microstrip Lines

MASANORI KOBAYASHI, MEMBER, IEEE, AND TAKAHIKO IIJIMA

Abstract—The spectral-domainanafysisusing Chebyshev’s polynomials

as basis functions is used to obtain the frequency-dependent characteristics

of current distributions and the effective relative permittivities of an open

microstrip line. The results obtained are compared with other available

results. To accurately obtain the current distributions reqnires a larger

number of basis functions. Both longitudinal and transverse current distk-

butions on the strip are shown for wide ranges of frequency (O< h /~. < 1).

I. INTRODUCTION

The dispersion characteristics of microstrip lines have been

investigated by a number of researchers using a variety of meth-

ods (see [1]–[10] and references therein). These methods are

intrinsically rigorous. However, the numerical results shown in

many papers were calculated by expressing the current distrib-

utions with a small number of basis functions to save CPU time.

The current distributions are fundamental quantities as sources

for electromagnetic fields of microstrip lines. However, the litera-

ture on the determination of these distributions is sparse [11]–[14].

Recently, Shih et al. [13] proposed a full-wave analysis based

on conformal mapping and variational reaction theory. For a

number of cases, the results of effective relative perrnittivities [13]

were in good agreement with those tabulated in [8]. Furthermore,

Shih et al. [13] revealed the frequency dependence of the current

distributions. This was the first time that those characteristics

were reasonably obtained for wide ranges of frequency. At lower

frequency, the results agreed well with those shown in [11].

Subsequently, FachL and De Zutter [14] showed the frequency-

dependent characteristics of the current distributions. However,

in both these papers these characteristics were not shown in

frequency ranges higher than h /XO = 0.2.

The present article shows the frequency-dependent characteris-

tics of current distributions and the effective relative permittivi-

ties up to h/& = 1 for several cases. These results are obtained

by the spectral-domain approach [4] using the Chebyshev polyno-

mials adopted by Kitazawa and Hayashi [6] as basis functions.

The results obtained are compared with other available results.

II. BASIS FUNCTIONS

The open microstrip line under consideration is shown in Fig.

1. It is assumed to be uniform and infinite in both the x and the

z direction. The infinitesimally thin strip and the ground plane

are taken as perfect conductors. The structure is divided into two

regions, corresponding to the air and the dielectric structure. It is

also assumed that the substrate material is lossless &d that its

relative permittivity and permeability are c and p ( =1), respec-

tively.

The propagation constant j3 can be obtained by the spectral-

domain approach [4] following the corrections mentioned in [8].

Then the choice of the basis functions is important for numerical
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Fig. 1. Mlcrostrip configuration.

TABLE I

COMPARISON OF EFFECTIVE RELATIVE PERMITTIVITIES (c = 8, w\h = 1)

——

12
—
10

METHOD
—

[5] 5,068 6.124 6.7U2 7.361 7.620 7.747 7.898 7’ 945

M(N)

1 5.4662 6.1218 6,7462 7.3693 7.6302 7,7561 7.8993 7.9458

KI 2 5 4678 6.1272 6.7576 7.3996 7.6591 7.7826 7.9:.64 7 9562

3 5.4678 6 1272 6.7576 7.3996 ?.6591 7.7826 7.9164 7.9562

4 5.4678 6.1272 6.7576 7.3996 7.6591 7.7826 7.9?.64 7.9562—

[131 5 471 6 130 6.753 7.393 7 654 7.778 7.9;. U 7 9U8

KI: Present method: h/ A.= h(mm)~(GHz)/299 .7925. —

efficiency. Kitazawa and Hayashi [6] adopted Tn(2x/w)/

{- and UH(2x/w) as basis functions and analyzed

various types of stnplines by the network analytical method of

electromagnetic fields; Tn( x) arid Un(x) are Chebyshev polyno-

mials of the first and second kinds, respectively. Kitazawa and

Hayashi claimed that fast convergence to the exact values for

e.ff ( f ) wasobtained?evenfor the cases of ~ = N = 21 UP to a
normalized frequency of h/& = 0.16 [6]. They showed the re-

sults of ecff ( j ) but not for the current distributions.

For the dominant mode, it is’ easily seen that 1=(x)I is even-

symmetric with respect to the y – z plane while ZJX) is odd-sym-

metric [4]. Tn( x )( ~, ( x )) is the even (odd) function when n is an

even number and the odd (even) function when n is an odd

number. Therefore, the present article takes the following basis

functions for {Yti(x) and lz~(x):

z..(~) = uztl(z~lw) (la)

/
Izn(x) =q(.-1)(2x/WJ) I- (lb)

on the strip (1x1 < w/2) and zero for lx I > w/2. These basis

functions are Fourier transformed as follows:

(2a)
Icrlw()i“.(a) = j( –1)(”-’)/2:Jny

Ialw

j,(a) = (–1)(”-1)/2
()

;Jn_l y (2b)

where Jn( x ) is the n th-order Bessel function.

III. NUMERICAL RESULTS

Table I shows a comparison of effective relative permittivities

~.ff (~) (f = 8, w/~ =1) for Kobayashi et al. [U the present
method, and Shih et al. [13]. The influence of the number of basis

functions M ( = N) on the current components is also included

in Table I. M and N denote the numbers of basis functions for
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TABLE II

COMPARISON OF EFFECTIVE RELATIVE PERMITTIVITIES ( c = 8, w/h = 0.1)

h, A.
0 Q 005 0 05 0,1 0.2 03 04 07 1.0

METHOD

[:1 4.92578* 4.937 5 270 5 765 6.799 7.367 7 633 7 876 7.939

F1 4 92573* 4.937 5 270 5,765 6.79Q 7 576 7 633 7 876 7.q39

[1:] 5. U2111 5.033 5 384 5.863 6,791 ? 365 7,617 7.872 7.938

KI: Present method; * [15]
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Fig. 2 Norm&ized current distributions versus normalized distacewlth the

numbers of baslsfucntions asparameters(c =8, w/h=l, k/XO =0,2)

the transverse and longitudinal current components, respectively.

Table I shows that fast convergence to the exact values of c,ff ( f“ )

is obtained even for the cases of M= N=2. The results obtained

with the present method show that the resultsin [8] and in [13]

are accurate to better than 0.5 and O.1 percent, respectively. The

resultsin [13] werein good agreement with those in [8] for many

cases. However, there were discrepancies uptoabout2 percent at

lower frequencies forthenarrower case of c=8 and w/k= O.l.

This discrepancy of 2 percent was seen even at h/&=O. This

comparison is reproduced here in Table II. The results with the

present method are obtained for M = N= 2. The result ECff(0)=

4.92578 marked by an asterisk in Table II was calculated by the

Green’s function technique with an extremely high degree of

accuracy [15]. The results with the present method are in very

good agreement with those in [8]. These facts show that the

calculation using the method given by Shih et al. [13] must be

carried out carefully for the cases involving narrower strips, for

example, w/h = 0.1.

Fig. 2 shows the normalized longitudinal and transverse cur-

rent distributions for severaf values of the number of basis

functions (M= N =1,2,3) at the normalized frequency h /XO =

0.2 for the case of c = 8 and w/h= 1. A good convergence of

current distributions requires M = N = 3 for a normalized trans-

verse current distribution 1X(x)/~l (x~ ) and M = N = 2 for a

normalized longitudinal current distribution 1,( x)/1= (0). [X (x~ )

denotes the extremum value of lX(X), and 1=(0) the value of

1:( x) at x = O. It is confirmed, although not shown here, that the

above requirements with respect to the numbers M and N are

also valid for the cases where h/10 is less than 0.2. However,

larger values of M and N are required for the convergence of a

current distribution for cases where h/ X.. is higher than 0.2.

To illustrate this, the normalized transverse current distribu-

tions at h/& = 1 for the case of c = 8 and w/h = 1 are shown

Fig, 3. Normahzed transverse current distributions versus normalized dis-

tance with the numbers of basis functions as parameters (c = 8, w/k =1,

h/&) =1),
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F1g 4 Frequency-dependent characteristics of normahzed transverse current

dmtrlbutlons (c = 8, w/h= 1)

for M= N=1,3,7 m Fig. 3. It is seen in this figure hat M= N

= 3 is insufficient for the case where h /AO =1. The curve for

M = N = 5 is in agreement with that for M = N = 7 although it is

not shown in Fig. 3. The present article takes M = N = 3 for

h/Ao <0.2, M= N=4for0.2< h/AO<0.4, and M= N=5to

7 for h/A. >0.4 to accurately obtain the current distributions.

Fig. 4 shows the frequency-dependent characteristics of the

normalized transverse current distributions for the case where

c = 8 and w/h =1. The curve for h/AO = O obtained in [11]

cannot be distinguished from that for h/X ~ = 0.001. It is seen in

Fig. 4 that the point Xtil giving the extremum of the transverse

current distribution shifts toward the strip edge.

Fig. 5 shows the frequency-dependent characteristics of the

normalized longitudinal current distributions for the case where
c = 8 and W/h =1. The curve for h/A. = O obtained in [11] is

given by the dashed lines in Fig. 5 and is the upper bound for the

curves of nonzero frequencies. The distribution curve for h/Au

higher than about 0.2 begins to have the part below the horizon-

tal line of 1,(x)/I=(0) =1.
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Fig. 5, Frequency-dependent characteristics of normalized Iongltudmal cur-

rent dlstrrbutlons (c = 8, w/h = 1). --- Green’s function technique [11];

— present method.

The shifts of the current distributions with respect to frequen-

cies for h /xO <0.2 shown in Figs. 4 and 5 are similar to those

revealed by Shih et al. [13], although for cases where c and w/h

have values different from those of the present article.

IV. CONCLUSION

The spectral-domain approach has been used to obtain the

frequency-dependent characteristics of current distributions and

the effective permittivities of open microstrip lines. The func-

tions U2H(zX/W) ancl T2(H-1)(2x/w)/~– (2x/w)z have been
adopted as basis functions; T.(x) and U.(x) are Chebyshev

polynomials of the first and second kinds, respectively. Numeri-

cal results reported in this article have been compared with other

available data.
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Shift of the Complex Resonance Frequency c~fa

Dielectric-Loaded Cavity Produced

by Small Sample Insertion Holes

SYLVAIN GAUTHIER, LOUIS MARCHILDON
AND C’EVDET AKYEL

Abstract —The presence of small sample insertion holes in a cylindrical

cavity produces a shift in the complex resonance frequency of the cavity. A

mathematical model is proposed to compute the shift when the cavity

oscillates in an axially symmetric TMOWIPrude. The treatment applies to

samples with arbitrary complex permittivity. The model is compared with

other treatments and checked against measured results.

I. INTRODUCTION

Insertion holes in resonant cavities produce changes in both

the real and imaginary parts of the complex resonance frequency,

which may amount to a few percent and are significant in

high-precision measurements. Several attempts have been made

to quantify hole effects. Estin and Bussey [1] and Meyer [2] have

estimated the change in the real part of the resonance frequency

for some simple TMOmP modes. Their main assumptions were

that the field is not perturbed in the main body of the cavity and

that in the tubes it is well represented by the first evanescent TM

mode. More recently, Li and Bosisio [3] have significantly im-

proved the treatment by allowing for a large number of modes in

the tubes. They have obtained correction terms due to insertion

holes for both the real part of the resonance frequency and the

quality factor of the cavity.

The present paper is an attempt to compute the shift of the

complex resonance frequency of a cavity produced by small

sample insertion holes. It was largely inspired by the work of Li

and Bosisio, which it tries to improve in two different ways. First,

we take fully into account the fact that, for lossy samples, the

phasors and the wavenumbers in the tubes are genuinely com-

plex. Second, we carry a larger fraction of the calculations

analytically. The resulting formulas are less susceptible to numer-

ical errors.
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